3.3.15 \(\int \frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{x^2} \, dx\) [215]

Optimal. Leaf size=227 \[ -\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{x}-\frac {i c \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{\sqrt {1-c^2 x^2}}-\frac {c \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^3}{3 b \sqrt {1-c^2 x^2}}+\frac {2 b c \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x)) \log \left (1-e^{2 i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {i b^2 c \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,e^{2 i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}} \]

[Out]

-(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2/x-I*c*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)-1/
3*c*(a+b*arcsin(c*x))^3*(-c^2*d*x^2+d)^(1/2)/b/(-c^2*x^2+1)^(1/2)+2*b*c*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^
2+1)^(1/2))^2)*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)-I*b^2*c*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*d
*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {4781, 4721, 3798, 2221, 2317, 2438, 4737} \begin {gather*} -\frac {c \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^3}{3 b \sqrt {1-c^2 x^2}}-\frac {i c \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{\sqrt {1-c^2 x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{x}+\frac {2 b c \sqrt {d-c^2 d x^2} \log \left (1-e^{2 i \text {ArcSin}(c x)}\right ) (a+b \text {ArcSin}(c x))}{\sqrt {1-c^2 x^2}}-\frac {i b^2 c \sqrt {d-c^2 d x^2} \text {Li}_2\left (e^{2 i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/x^2,x]

[Out]

-((Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/x) - (I*c*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/Sqrt[1 - c^
2*x^2] - (c*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^3)/(3*b*Sqrt[1 - c^2*x^2]) + (2*b*c*Sqrt[d - c^2*d*x^2]*(a
 + b*ArcSin[c*x])*Log[1 - E^((2*I)*ArcSin[c*x])])/Sqrt[1 - c^2*x^2] - (I*b^2*c*Sqrt[d - c^2*d*x^2]*PolyLog[2,
E^((2*I)*ArcSin[c*x])])/Sqrt[1 - c^2*x^2]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4721

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4781

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 1))), x] + (-Dist[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d +
 e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x] + Dist[(c^2/(f^2*(m + 1)))*S
imp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 2)*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x]) /
; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x^2} \, dx &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x}+\frac {\left (2 b c \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{x} \, dx}{\sqrt {1-c^2 x^2}}-\frac {\left (c^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {1-c^2 x^2}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b \sqrt {1-c^2 x^2}}+\frac {\left (2 b c \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {i c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}}-\frac {c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b \sqrt {1-c^2 x^2}}-\frac {\left (4 i b c \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {i c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}}-\frac {c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b \sqrt {1-c^2 x^2}}+\frac {2 b c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {\left (2 b^2 c \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {i c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}}-\frac {c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b \sqrt {1-c^2 x^2}}+\frac {2 b c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}+\frac {\left (i b^2 c \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {i c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}}-\frac {c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b \sqrt {1-c^2 x^2}}+\frac {2 b c \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {i b^2 c \sqrt {d-c^2 d x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.67, size = 257, normalized size = 1.13 \begin {gather*} -\frac {a^2 \sqrt {d-c^2 d x^2}}{x}+a^2 c \sqrt {d} \text {ArcTan}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )-\frac {a b \sqrt {d-c^2 d x^2} \left (2 \sqrt {1-c^2 x^2} \text {ArcSin}(c x)+c x \text {ArcSin}(c x)^2-2 c x \log (c x)\right )}{x \sqrt {1-c^2 x^2}}-\frac {b^2 c \sqrt {d-c^2 d x^2} \left (\text {ArcSin}(c x) \left (\left (3 i+\frac {3 \sqrt {1-c^2 x^2}}{c x}\right ) \text {ArcSin}(c x)+\text {ArcSin}(c x)^2-6 \log \left (1-e^{2 i \text {ArcSin}(c x)}\right )\right )+3 i \text {PolyLog}\left (2,e^{2 i \text {ArcSin}(c x)}\right )\right )}{3 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/x^2,x]

[Out]

-((a^2*Sqrt[d - c^2*d*x^2])/x) + a^2*c*Sqrt[d]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))] - (a
*b*Sqrt[d - c^2*d*x^2]*(2*Sqrt[1 - c^2*x^2]*ArcSin[c*x] + c*x*ArcSin[c*x]^2 - 2*c*x*Log[c*x]))/(x*Sqrt[1 - c^2
*x^2]) - (b^2*c*Sqrt[d - c^2*d*x^2]*(ArcSin[c*x]*((3*I + (3*Sqrt[1 - c^2*x^2])/(c*x))*ArcSin[c*x] + ArcSin[c*x
]^2 - 6*Log[1 - E^((2*I)*ArcSin[c*x])]) + (3*I)*PolyLog[2, E^((2*I)*ArcSin[c*x])]))/(3*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 761 vs. \(2 (225 ) = 450\).
time = 0.32, size = 762, normalized size = 3.36

method result size
default \(-\frac {a^{2} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{d x}-a^{2} c^{2} x \sqrt {-c^{2} d \,x^{2}+d}-\frac {a^{2} c^{2} d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3} c}{3 c^{2} x^{2}-3}+\frac {i b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}\, c}{c^{2} x^{2}-1}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} x \,c^{2}}{c^{2} x^{2}-1}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2}}{\left (c^{2} x^{2}-1\right ) x}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \arcsin \left (c x \right ) \ln \left (1-i c x -\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \polylog \left (2, i c x +\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}+\frac {2 i a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) c}{c^{2} x^{2}-1}+\frac {a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} c}{c^{2} x^{2}-1}+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \polylog \left (2, -i c x -\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x \,c^{2}}{c^{2} x^{2}-1}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{\left (c^{2} x^{2}-1\right ) x}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}-1\right ) c}{c^{2} x^{2}-1}\) \(762\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2/x^2,x,method=_RETURNVERBOSE)

[Out]

-a^2/d/x*(-c^2*d*x^2+d)^(3/2)-a^2*c^2*x*(-c^2*d*x^2+d)^(1/2)-a^2*c^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-
c^2*d*x^2+d)^(1/2))+1/3*b^2*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*arcsin(c*x)^3*c+2*I*b^2*(-c^
2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)*c*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))-b^2*(-d*(c^2*x^2-1))^
(1/2)*arcsin(c*x)^2/(c^2*x^2-1)*x*c^2+b^2*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)^2/(c^2*x^2-1)/x-2*b^2*(-c^2*x^2+1
)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)*c*arcsin(c*x)*ln(1+I*c*x+(-c^2*x^2+1)^(1/2))-2*b^2*(-c^2*x^2+1)^(1/
2)*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)*c*arcsin(c*x)*ln(1-I*c*x-(-c^2*x^2+1)^(1/2))+I*b^2*(-d*(c^2*x^2-1))^(1/2
)*arcsin(c*x)^2/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*c+2*I*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)
*arcsin(c*x)*c+a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*arcsin(c*x)^2*c+2*I*b^2*(-c^2*x^2+1)^
(1/2)*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)*c*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))-2*a*b*(-d*(c^2*x^2-1))^(1/2)*ar
csin(c*x)/(c^2*x^2-1)*x*c^2+2*a*b*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)/(c^2*x^2-1)/x-2*a*b*(-d*(c^2*x^2-1))^(1/2
)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*ln((I*c*x+(-c^2*x^2+1)^(1/2))^2-1)*c

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2/x^2,x, algorithm="maxima")

[Out]

-(c*sqrt(d)*arcsin(c*x) + sqrt(-c^2*d*x^2 + d)/x)*a^2 + sqrt(d)*integrate((b^2*arctan2(c*x, sqrt(c*x + 1)*sqrt
(-c*x + 1))^2 + 2*a*b*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x + 1)/x^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)/x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x))**2/x**2,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**2/x**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {d-c^2\,d\,x^2}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2))/x^2,x)

[Out]

int(((a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2))/x^2, x)

________________________________________________________________________________________